top of page

Meals & nutrition

Public·13 members


A river is a natural flowing watercourse, usually freshwater stream, flowing on the surface or inside caves towards another waterbody at a lower elevation, such as an ocean, sea, bay, lake, wetland, or another river. In some cases, a river flows into the ground or becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to using names such as creek, brook, and rivulet. There are no official definitions for the generic term river as applied to geographic features,[1] although in some countries or communities, a stream is defined by its size. Many names for small rivers are specific to geographic location; examples are "run" in some parts of the United States, "burn" in Scotland and Northeast England, and "beck" in Northern England. Sometimes a river is defined as being larger than a creek,[2] but not always: the language is vague.[1]


Download Zip:

Rivers are an important part of the water cycle. Water from a drainage basin generally collects into a river through surface runoff from precipitation, meltwater released from natural ice and snowpacks, and other underground sources such as groundwater recharge and springs. Rivers are often considered major features within a landscape; however, they actually only cover around 0.1% of the land on Earth. Rivers are also an important natural terraformer, as the erosive action of running water carves out rills, gullies, and valleys in the surface, as well as transferring silt and dissolved minerals downstream, forming river deltas and islands where the flow slows down. As a waterbody, rivers also serve crucial ecological functions by providing and feeding freshwater habitats for aquatic and semiaquatic fauna and flora, especially for migratory fish species, as well as enabling terrestrial ecosystems to thrive in the riparian zones.

Rivers are significant to mankind since many human settlements and civilizations are built around sizeable rivers and streams.[3] Most of the major cities of the world are situated on the banks of rivers, as they are (or were) depended upon as a vital source of drinking water, for food supply via fishing and agricultural irrigation, for shipping, as natural borders and/or defensive terrains, as a source of hydropower to drive machinery or generate electricity, for bathing, and as a means of disposing of waste. In the pre-industrial era, larger rivers were a major obstacle to the movement of people, goods, and armies across regions. Towns often developed at the few locations suitable for fording, to build bridges, or to support ports,[needs copy edit] and many major cities such as London are located at the narrowest and most reliable sites at which a river could be crossed via bridges or ferries.[4]

A river begins at a source (or more often several sources) which is usually a watershed, drains all the streams in its drainage basin, follows a watercourse, and ends either at a mouth or mouths which could be a confluence, river delta, etc. The water in a river is usually confined to a channel, made up of a stream bed between banks. In larger rivers, there is often also a wider floodplain shaped by floodwaters over-topping the channel. Floodplains may be very wide in relation to the size of the river channel. This distinction between river channel and floodplain can be blurred, especially in urban areas where the floodplain of a river channel can become greatly developed by housing and industry.

Rivers can flow down mountains and hills through valleys and can create canyons or gorges, especially when traversing plains. The river channel typically contains a single stream, but some rivers flow as several interconnecting streams, producing a braided river,[5] which occur on peneplains and some of the larger river deltas. Anastamosing rivers are similar to braided rivers and are quite rare; they have multiple sinuous channel - 1 carrying large volumes of sediment. There are rare cases of river bifurcation in which a river divides into distributaries, and the resultant flows end in different seas. An example is the Nerodime River in Kosovo.

Throughout the course of the river, the total volume of water transported downstream will often be a combination of the free water flow together with a substantial volume flowing through sub-surface rocks and gravels that underlie the river and its floodplain (called the hyporheic zone). For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow.

Most but not all rivers flow on the surface. Subterranean rivers flow underground in caves. Such rivers are frequently found in regions with limestone geologic formations. Subglacial streams are the braided rivers that flow at the beds of glaciers and ice sheets, permitting meltwater to be discharged at the front of the glacier. Because of the gradient in pressure from the overlying weight of the glacier, such streams can even flow uphill.

An intermittent river (or ephemeral river) only flows occasionally and can be dry for several years at a time. These rivers are found in regions with limited or highly variable rainfall or can occur because of geologic conditions such as a highly permeable river bed. Some ephemeral rivers flow during the summer months but not in the winter. Such rivers are typically fed from chalk aquifers which recharge from winter rainfall. In England, these rivers are called bournes and give their name to places such as Bournemouth and Eastbourne. Even in humid regions, the location where flow begins in the smallest tributary streams generally moves upstream in response to precipitation and downstream in its absence or when active summer vegetation diverts water for evapotranspiration. Normally dry rivers in arid zones are often identified as arroyos or other regional names.

The Strahler Stream Order ranks rivers based on the connectivity and hierarchy of contributing tributaries. Headwaters are first order while the Amazon River is twelfth order. Approximately 80% of the rivers in the world are of the first and second order.

In certain languages, distinctions are made among rivers based on their stream order. In French, for example, rivers that run to the sea are called fleuve, while other rivers are called rivière. For example, in Canada, the Churchill River in Manitoba is called la rivière Churchill as it runs to Hudson Bay, but the Churchill River in Labrador is called le fleuve Churchill as it runs to the Atlantic Ocean. As most rivers in France are known by their names only without the word rivière or fleuve (e.g. la Seine, not le fleuve Seine, even though the Seine is classed as a fleuve), one of the most prominent rivers in the Francophone commonly known as fleuve is le fleuve Saint-Laurent (the St. Lawrence River). Since many fleuves are large and prominent, receiving many tributaries, the word is sometimes used to refer to certain large rivers that flow into other fleuves; however, even small streams that run to the sea are called fleuve (e.g. fleuve côtier, "coastal fleuve").

Rivers can generally be classified as either alluvial, bedrock, or some mix of the two. Alluvial rivers have channels and floodplains that are self-formed in unconsolidated or weakly consolidated sediments. They erode their banks and deposit material on bars and their floodplains.

Bedrock rivers form when the river downcuts through the modern sediments and into the underlying bedrock. This occurs in regions that have experienced some kind of uplift (thereby steepening river gradients) or in which a particularly hard lithology causes a river to have a steepened reach that has not been covered in modern alluvium. Bedrock rivers very often contain alluvium on their beds; this material is important in eroding and sculpting the channel. Rivers that go through patches of bedrock and patches of deep alluvial cover are classified as mixed bedrock-alluvial.

Alluvial rivers can be further classified by their channel pattern as meandering, braided, wandering, anastomose, or straight. The morphology of an alluvial river reach is controlled by a combination of sediment supply, substrate composition, discharge, vegetation, and bed aggradation.

Rivers flow downhill with their power derived from gravity. A common misconception holds that all or most rivers flow from north to south, but this is not so: rivers flow in all directions of the compass and often have complex meandering paths.[15][16][17]

Rivers flowing downhill, from river source to river mouth, do not necessarily take the shortest path. For alluvial streams, straight and braided rivers have very low sinuosity and flow directly downhill, while meandering rivers flow from side to side across a valley. Bedrock rivers typically flow in either a fractal pattern, or a pattern that is determined by weaknesses in the bedrock, such as faults, fractures, or more erodible layers.

In many cases, human activities in rivers and floodplains have dramatically increased the risk of flooding. Straightening rivers allows water to flow more rapidly downstream, increasing the risk of flooding places further downstream. Building on flood plains removes flood storage, which again exacerbates downstream flooding. The building of levees only protects the area behind the levees and not those further downstream. Levees and flood banks can also increase flooding upstream because of the back-water pressure as the river flow is impeded by the narrow channel banks. Detention basins finally also reduce the risk of flooding significantly by being able to take up some of the flood water.

The organisms in the riparian zone respond to changes in river channel location and patterns of flow. The ecosystem of rivers is generally described by the river continuum concept, which has some additions and refinements to allow for dams and waterfalls and temporary extensive flooding. The concept describes the river as a system in which the physical parameters, the availability of food particles, and the composition of the ecosystem are continuously changing along its length. The food (energy) that remains from the upstream part is used downstream. 041b061a72


Welcome to the group! You can connect with other members, ge...
bottom of page